Music Encoding Conference 2019 Score and Performance Features

Score and Performance Features for Rendering
Expressive Music Performances

Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam

Graduate School of Culture Technology, KAIST, Korea
{jdasam, ilcobo2, luciaicul, juhannam}@kaist.ac.kr

May 2019

1 Introduction

Rendering a human-like expressive music performance is a challenging task for
computers. One approach is to train a learning model to imitate human per-
formances given music scores. This requires the model to take the score data
as if human performers read and understand the music score. In addition, the
performance data aligned with the score should be represented to render the
human-like performance effectively.

We recently proposed a neural-network-based system that renders expressive
piano performances from music scores[2]. To implement the performance ren-
dering system, we numerically extract features from score data in MusicXML
and performance data in MIDI. In this paper, we present the details of feature
extraction from the score and performance data. Though these features are orig-
inally devised for the performance rendering system, they can be also used for
other tasks such as chord recognition, composer identification, or performance
evaluation.

2 Score Features

Our rendering model takes a sequence of notes as an input. Therefore the score
and performance information should be encoded in note-level. Our goal is to
encode the score information into note-level features so that our network model
can “understand” characteristics of each note in the context of the entire score.

Because of computational limitation on memory usage, we cannot use a full
sequence of notes from the entire piece as an input. Therefore, the piece has
to be sliced into several mini sequences. The problem with this process is that
many of important directions such as tempo markings (e.g. Allegro, Adagio,
pit mosso) or dynamic markings (e.g. pp, mf) that precede the notes can be



Music Encoding Conference 2019 Score and Performance Features

lost during the slicing. To solve this problem, we have to embed the expression
markings into note-level score features.

Many of previous works employed not only the basic features such as pitch
and duration of the note but also higher-level features such as key and metric
information. [I]. In addition to them, we use more detailed information such
as the duration of following rest, articulation markings (e.g. trill, staccato,
tenuto), distance from the closest preceding tempo and dynamic directions, slur
and beam status.

To embed various directions into note-level score features, we have to know
the effective range of each direction. We define the end position of each direction
with a simple categorical rule. We categorize directions into three hierarchy lev-
els. The effective range of each direction is from its start position to appearance
of other direction in the same or higher level of the hierarchy. The high-level of
directions consists of direction with absolute meaning such as Allegro, Adagio,
Largo in tempo marking and and dynamic markings like pp, mf. The mid-level
directions include tempo markings like meno mosso, pit animato and dynamic
markings like rinforzando. The low-level directions show a local change in tempo
or dynamic, such as ritardando, accelerando or crescendo, sforzando.

Another issue is how to embed these directional words into numeric values.
One of the solutions is to represent them as a long one-hot vector so that each
element of the vector represents a single word using a dictionary that includes
all possible directions. The problem is that there are a variety of possible mu-
sical directions and the appearance of individual direction is extremely sparse
in general. Therefore, we embed the directions into a vector with numeric val-
ues based on our domain knowledge. For example, a tempo vector has three
elements, and each element represents absolute tempo, relative tempo change,
and acceleration, respectively. All detailed implementation and discussion on
the limitation of these rules will be covered in the full paper.

3 Performance Features

Human performance on the piano is captured well in MIDI format. To train
the performance rendering model, we first align notes in the score to the per-
formance MIDI using an automatic alignment tool [3] and then extract tempo,
onset deviation, velocity, articulation, and pedal as note-level performance fea-
tures. The tempo represents the number of beats played in a minute. The beat
is defined by the time signature of the measure. For each beat in a piece, we
calculate the time interval between two beats in the performance. The onset
deviation is a feature that explains a micro-timing or asynchronous of perfor-
mance, or tempo rubato within a single beat. For each note, we calculate how
the note onset is displaced in its ‘in-tempo’ position based on the pre-defined
tempo. The dynamics of performance can be represented with MIDI velocities
of the corresponding notes.

While these features have been widely used in many of previous works [I], we
also tried to model the use of piano pedals, which is one of the most challenging



Music Encoding Conference 2019 Score and Performance Features

problems in the performance rendering. We encoded the pedal information in
performance MIDI into note-level features by observing the pedal state in four
different positions of the note: start of the note, offset of the note, minimum
pedal value between note onset and offset, minimum pedal value between note
offset and the following new onset.

4 Result and Conclusion

We have trained an RNN-based system with the proposed feature scheme. The
result of how the model generated different performance based on musical direc-
tions in input MusicXML is presented in Figure |l The result showed that our
moddel could apply musical directions while generating the performances. A lis-
tening test showed that our model successfully achieved human-like expressions.
The performance generated by our model is uploaded in YouTubeIH

We release our Python-based feature extraction for MusicXML as a pub-
licly available software libraryEI, hoping that it can be useful for various music
processing tasks.

References

[1] Carlos Eduardo Cancino-Chacén, Maarten Grachten, Werner Goebl, and
Gerhard Widmer. Computational models of expressive music performance:
A comprehensive and critical review. Frontiers in Digital Humanities, 5:25,
2018.

[2] Dasaem Jeong, Taegyun Kwon, and Juhan Nam. VirtuosoNet: A hierarchi-
cal attention RNN for generating expressive piano performance from music
score. In NeurIPS 2018 Workshop on Machine Learning for Creativity and
Design, 2018.

[3] Eita Nakamura, Kazuyoshi Yoshii, and Haruhiro Katayose. Performance
error detection and post-processing for fast and accurate symbolic music
alignment. In 18th International Society for Music Information Retrieval
Conference (ISMIR), 2017.

1https ://www.youtube. com/watch?v=hPBR2Rxu3-s&1ist=PLkIVXCxCZ08rD1PXbrbOKNOSYVh5Pvg-c
“https://github.com/jdasam/pyScoreParser


https://www.youtube.com/watch?v=hPBR2Rxu3-s&list=PLkIVXCxCZ08rD1PXbrb0KNOSYVh5Pvg-c
https://github.com/jdasam/pyScoreParser

Music Encoding Conference 2019 Score and Performance Features

(a) Without any directions (b) With original directions
80 .%?’t" 80 e . aﬁ".ef“.ei - f
*\.5. L 75 T e
275 RN 70 | viten. / "
o . * ‘
2 70 a\ 65 N
[:}] N 1 /
L atempo s pp
- 60 »
\ p
60 \\ 551 //
» L 4
100 105 110 115 120 92 94 96 98 100 102 104
(c) Omitting riten. and p from (b) (d) With inversed directions
85 ""7""':'-'&@, '
g ¥ 95 a tempo |
80 . » i, T i P
T o il mosso f
2> 751 e L "
G N 85
o 70 < pp
2 65 80
60/ - 75
e /, 70 {
55
96 98 100 102 104 100 105 110 115 120 125 130
Tempo (BPM) Tempo (BPM)

Figure 1: The visualization of generated MIDI performance by our trained
model depends on directions in input MusicXML. The test piece is Etude op.
25 No. 9 by Chopin. Each point represents a tempo and average dynamics of
a beat in the piece, which were smoothed with previous values. The smallest
and most transparent point represents the beginning beat of the piece and the
largest and least transparent point represents the end beat. Black, red, blue,
and gold colored point represent first beat of measure 25, 33, 36, and measure
37’s second beat, respectively. In (a), we deleted every tempo and dynamic
markings in the input MusicXML. Since our model was trained from other
various classical music, it generated tempo and dynamic change from notes’
pitch and rhythm. In (b), the input has the tempo and dynamic markings from
original music. As shown in the figure, The performance had clear dynamics
highlight when ff appeared. Also, because of the pp direction right before the
last measure, there was a clear ritardando at the end of the piece. When we
omitted a ritenuto and p at measure 36 and 37 as presented in (c), the ff of
measure 33 affected until pp appeared. When we changed ritenuto in measure
36 to piu mosso, it was not cancelled by a tempo by our hierarchy definition,
and the tempo has changed until the end of the piece

Appendices

A List of Features

The list of input features are: a) pitch in MIDI pitch(int) b) octave number
(int) c) pitch class (12-D one-hot vector) d) duration e) pitch in octave (int)



Music Encoding Conference 2019 Score and Performance Features

and pitch class as one-hot vector f) measure length g) duration of following
rest h) duration after the corresponding tempo marking i) duration after the
corresponding dynamic marking j) relative position in measure [0 - 1] k) relative
position in entire piece [0 - 1] 1) if grace note, number of notes between itself and
its following non-grace note, including itself (int) m) is preceded by a grace note
(bool) n) is followed by a fermata rest (bool) o) time signature denominator
vector (4-D vector: 2, 4, 8, 16) p) time signature numerator vector (5-D vector:
duple, triple, quadruple, compound, and other) q) slur and beam status vec-
tor (6-D multi-hot vector: start, end, continue for slur and beam) r) composer
vector (one-hot vector) s) notation marking vector for trill, fermata, accented,
strong accented, staccato, tenuto, arpeggiated, cue, slash (8-D multi-hot vec-
tor) t) beat strength of the note (rule-based, float) u) tempo marking vector
(rule-based, 5-D vector) v) dynamic marking vector (rule-based 4-D vector)

Every duration or length is measured in a quarter note. For example, a
duration of an eight note is 0.5, and measure length of 4/4 bar is 4.

These global conditioning features are added to input features along with
the corresponding score features: a) embedded tempo marking vector of the
beginning of the piece b) tempo of the first ten beat in quarter note per minute
(log) c) composer of the piece (one-hot vector)

The output features are: a) Tempo in quarter note per minute, calculated
for every beat (log) b) MIDI velocity ¢) deviation of the note onset compared
to ’in-tempo position’ in quarter note d) articulation (log) e) value of sustain
pedal at note onset [0 - 127] f) value of sustain pedal at note offset [0 - 127]
g) smallest sustain pedal value between the note’s onset and the offset [0 -
127] h) elapsed time between the note onset and the moment g) is detected
i) smallest sustain pedal value between the note offset and its closest next note
onset j) elapsed time between the note offset and the moment i) is detected
k) value of soft pedal at note onset.

We used additional features for modeling a trill note. The trill features are
a) number of trill notes per second b) relative velocity of the last trill note
compared to the first trill note c) relative duration ratio of the first trill note
d) relative duration ratio of the last trill note e) whether the trill starts with
higher note (alternative trill).

A.0.1 Rule-based Embedding

The beat strength represents how much strong the beat is in the note position.
The strength is set 4 if the note is in the start of the measure, 3 if the note is
in half position of a duple meter, 2 if the note is in third or two third position
of triple meter. Similarly, we defined the beat strength of quarter positions or
eighth positions.

We made a conversion dictionary that takes tempo and dynamic markings
and make it into five-dimensional vectors. Each dimension of the vector has a
value between -1 to 1. Below are the examples of the conversion.

The last dimension of dynamic embedding vector represents number of un-
resolved crescendo or decrescendo between notes and corresponding dynamics.



Music Encoding Conference 2019 Score and Performance Features

’ Markings \ Encoded Vector ‘
Allegro [0.5, 0, 0, 0, 0]
Andante [-0.5, 0, 0, 0, 0]
Allegro - pit mosso [0.5, 0.6, 0, 0, 0]
Sehr rasch - etwas langsamer | [0.8,-0.3, 0, 0, 0]
Scherzo, Allegro [0.5, 0,0, 0, 1]
Andantino - rit [-0.3, 0, -0.5, 0, 0]
Allegro molto - riten 0.6, 0, 0,-0.5, 0
Allegro molto - poco riten 0.6, 0, 0,-0.3, 0
mp - cresc [-0.2, 0.7, 0, 0, 0]
f-fz [0.4, 0, 0.3, 0, 0]
ff - rinforzando molto [0.7, 0, 0, 0.7, 0]

Table 1: Examples of tempo and dynamic markings to the encoded vectors

A crescendo represented as a wedge has clear start and end position. Usu-
ally, a wedge is followed by dynamic markings like p and mf, or followed by
a decrescendo wedge. But sometimes, it can be followed by no other sign. We
accumulate this unresolved crescendos and encode it to the individual notes.



	Introduction
	Score Features
	Performance Features
	Result and Conclusion
	Appendices
	List of Features
	Rule-based Embedding 


